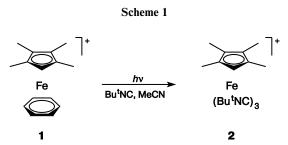
Photochemical replacement of benzene in the tetramethylcyclopentadienyl complex of iron, $[(\eta - C_5 M e_4 H) F e (\eta - C_6 H_6)]^+$

D. A. Loginov, I. D. Baravi, O. I. Artyushin, Z. A. Starikova, P. V. Petrovskii, and A. R. Kudinov*

A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 11991 Moscow, Russian Federation.
Fax: +7 (499) 135 5085. E-mail: arkudinov@ineos.ac.ru


Irradiation of the cation $[(\eta-C_5Me_4H)Fe(\eta-C_6H_6)]^+$ (1) and Bu^tNC with visible light in acetonitrile results in the displacement of the benzene ligand, giving $[(\eta-C_5Me_4H)Fe(Bu^tNC)_3]^+$ (2). Reactions of complex 1 with P(OR)₃ and dppe in MeCN yield the complexes $[(\eta-C_5Me_4H)Fe(MeCN)\{P(OR)_3\}_2]^+$ (R = Me (3) and Et (4)) and $[(\eta-C_5Me_4H)Fe(MeCN)(dppe)]^+$ (5) containing two Fe—P bonds. The same reactions in CH_2Cl_2 give the tris(phosphite) complexes $[(\eta-C_5Me_4H)Fe\{P(OR)_3\}_3]^+$ (6, 7). A photochemical reaction of complex 1 with pentaphosphaferrocene $Cp^*Fe(\eta-cyclo-P_5)$ yields the triple-decker cation $[(\eta-C_5Me_4H)Fe(\mu-\eta:\eta-cyclo-P_5)FeCp^*]^+$ (8) with a bridging pentaphospholyl ligand. Structures [2]PF₆ and [3]PF₆ were identified by X-ray diffraction.

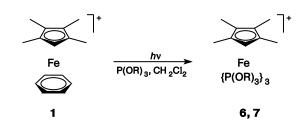
Key words: iron, sandwich compounds, triple-decker complexes.

It is known that the cationic iron complex $[CpFe(\eta-C_6H_6)]^+$ exchanges its benzene for other ligands upon irradiation with visible light. This reaction was used to obtain a great number of organometallic compounds (e.g., sandwich and triple-decker complexes) containing the fragment $CpFe.^{5-10}$ Unfortunately, this method is unsuitable for the pentamethylated analog $[Cp*Fe(\eta-C_6H_6)]^+$, which is probably due to the electronic and steric effects of five methyl groups. The present study deals with photochemical reactions of the tetramethylcyclopentadienyl complex of iron, $[(\eta-C_5Me_4H)Fe(\eta-C_6H_6)]^+$.

Results and Discussion

The electronic properties of the tetramethylcyclopentadienyl ligand (C_5Me_4H) are similar to those of pentamethylcyclopentadienyl. However, lack of one methyl group considerably reduces its steric volume in complexes with transition metals. A comparative study reveals that the cation $[(\eta-C_5Me_4H)Fe(\eta-C_6H_6)]^+$ (1) reacts with Bu^tNC in acetonitrile under irradiation with visible light at a rate of about three times higher than that for the pentamethylated analog $[Cp^*Fe(\eta-C_6H_6)]^+$. Starting from cation 1, we obtained the tris(isocyanide) complex $[(\eta-C_5Me_4H)Fe(Bu^tNC)_3]^+$ (2) (Scheme 1);* the 83% conversion was achieved after 20 h.

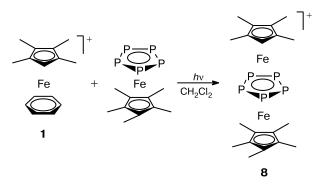
Reactions of cation 1 with phosphites P(OR)₂ (R = Me, Et) in MeCN afford the bis(phosphite) complexes $[(\eta - C_5Me_4H)Fe(MeCN)\{P(OR)_3\}_2]^+$ (3, 4) containing coordinated acetonitrile (Scheme 2). A similar reaction with Ph₂P(CH₂)₂PPh₂ (dppe) gives the cation $[(\eta - C_5 Me_4 H) Fe(MeCN)(dppe)]^+$ (5). Earlier,³ the same pattern has been observed in reactions of the unsubstituted complex $[CpFe(\eta-C_6H_6)]^+$ with phosphines and phosphites. However, our recent investigations¹² have shown that the cyclohexadienyl complex $[(\eta^5-C_6H_7)Fe(\eta-C_6H_6)]^+$ reacts with P(OR)3 in acetonitrile to give the tris(phosphite) cations $[(\eta^5-C_6H_7)Fe\{P(OR)_3\}_3]^+$. The observed differences are probably associated with the higher lability of the Fe–N bond in the complex $[(\eta^5-C_6H_7)Fe(MeCN) \{P(OR)_3\}_2\}^+$ compared to complexes 3–5. Nevertheless, the tris(phosphite) complexes $[(\eta - C_5Me_4H)Fe\{P(OR)_3\}_3]^+$ (6, 7) were obtained in CH₂Cl₂, which is a poorly coordinating ligand (Scheme 3).


Earlier,⁶ it has been demonstrated that irradiation of the complex $[CpFe(\eta-C_6H_6)]^+$ with visible light in the

^{*} All the cationic complexes obtained were isolated as salts with the anion PF₆⁻ (the anions are omitted from the schemes).

Scheme 2

R = Me(3), Et(4)


Scheme 3

R = Me(6), Et(7)

presence of pentaphosphaferrocene $Cp^*Fe(\eta-cyclo-P_5)$ gives the triple-decker cation $[CpFe(\mu-\eta:\eta-cyclo-P_5)-FeCp^*]^+$ with a bridging pentaphospholyl ligand. Using complex 1 in a similar reaction with $Cp^*Fe(\eta-cyclo-P_5)$ in CH_2Cl_2 , we obtained the triple-decker cation $[(\eta-C_5Me_4H)Fe(\mu-\eta:\eta-cyclo-P_5)FeCp^*]^+$ (8) (Scheme 4). It should be noted that the synthesis of the related decamethylated complex $[Cp^*Fe(\mu-\eta:\eta-cyclo-P_5)FeCp^*]^+$ involves the acetonitrile derivative $[Cp^*Fe(MeCN)_3]^+$ (see Ref. 13), which is not easily accessible but is more reactive than the corresponding benzene complex. 9,14,15

Scheme 4

The structures of the complexes [2]PF₆ and [3]PF₆ were examined by X-ray diffraction. The structures of cations 2 and 3 are shown in Figs 1 and 2; selected bond lengths are given in Tables 1 and 2. The distance

Fe...C₅Me₄H in cation **3** (1.730 Å) is close to the corresponding distance in the neutral complex $(\eta$ -C₅Me₄H)-Fe(CO)(PPh₃)I (1.737 Å), ¹⁶ while in tris(isocyanide) complex **2**, this distance is somewhat shorter (1.713 Å). The Fe—C(Bu^tNC) bonds in cation **2** (on average, 1.838 Å) are shorter than those in the related complexes [$(\eta^5$ -C₆H₇)-Fe(Bu^tNC)₃]⁺ (on average, 1.854 Å)¹⁷ and [$(\eta$ -9-SMe₂-7,8-C₂B₉H₁₀)Fe(Bu^tNC)₃]⁺ (on average, 1.847 Å). ¹⁸ The bonds Fe—P (on average, 2.154 Å) and Fe—N (1.912 Å) in cation **3** are also shorter than those in [CpFe(MeCN){P(OMe)₃}₂]⁺ (on average, Fe—P, 2.179 Å; Fe—N, 1.924 Å). ¹⁹ The stronger coordination of the σ-ligands to the Fe atom in the tetramethylcyclopenta-

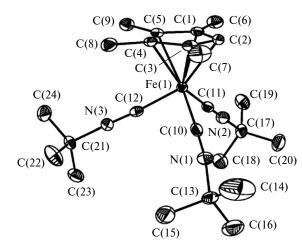


Fig. 1. Structure of cation 2 with atomic thermal displacement ellipsoids (p = 50%). The hydrogen atoms are omitted.

Table 1. Selected bond lengths (d) in cation 2

Bond	d/Å	Bond	d/Å
Fe(1)—C(1)	2.101(2)	Fe(1)—C(11)	1.841(2)
Fe(1)-C(2)	2.082(2)	Fe(1)-C(12)	1.836(2)
Fe(1)-C(3)	2.105(2)	C(10)-N(1)	1.161(3)
Fe(1)-C(4)	2.095(2)	C(11)-N(2)	1.158(3)
Fe(1)-C(5)	2.100(2)	C(12)-N(3)	1.161(3)
Fe(1)-C(10)	1.837(2)	. , , , ,	, ,

Fig. 2. Structure of cation 3 with atomic thermal displacement ellipsoids (p = 50%). The hydrogen atoms are omitted.

Table 2. Selected bond lengths (d) in cation 3

Bond	d/Å	Bond	d/Å
Fe(1)-C(1)	2.097(2)	Fe(1)-N(1)	1.912(2)
Fe(1)-C(2)	2.120(3)	Fe(1)-P(1)	2.1516(8)
Fe(1)-C(3)	2.118(3)	Fe(1)-P(2)	2.1553(7)
Fe(1)-C(4)	2.134(3)	C(16)-N(1)	1.126(3)
Fe(1)-C(5)	2.102(3)		

dienyl complexes is probably due to the stronger electrondonating properties of the C_5Me_4H ligand compared to Cp, C_6H_7 , and $9-SMe_2-7,8-C_2B_9H_{10}$.

Thus, we discovered that complex 1 can exchange its benzene molecule for other ligands when exposed to visible light, which makes this complex a convenient synthetic equivalent of the cation $[(\eta-C_5Me_4H)Fe]^+$.

Experimental

Reactions were carried out under argon in dry solvents prepared according to standard procedures. Reaction products were isolated in air. The starting complex $Cp^*Fe(\eta-cyclo-P_5)$ was prepared as described earlier. The complex $[(\eta-C_5Me_4H)-Fe(CO)_2]_2$ was synthesized by analogy with $[Cp^*Fe(CO)_2]_2$; octane was used as a solvent instead of 2,2,5-trimethylhexane. Irradiation was carried out in a Schlenk tube 15 mm in diameter with mercury luminescent lamps (total power 650 W) at 5–10 °C. The Schlenk tube and the lamps were immersed in an appropriate vessel lined with aluminum foil and cooled with running water. 1H and ^{31}P NMR spectra were recorded on a Bruker Avance-400 instrument (400.13 and 161.98 MHz, respectively).

[(η-Tetramethylcyclopentadienyl)(η-benzene)iron] hexafluorophosphate, [(η- C_5 Me₄H)Fe(η- C_6 H₆)]PF₆ ([1]PF₆). A solution of Br₂ (0.6 g, 3.8 mmol) in CH₂Cl₂ was added dropwise to a solution of [(η- C_5 Me₄H)Fe(CO)₂]₂ (1.7 g, 3.6 mmol) in CH₂Cl₂ (20 mL). The reaction mixture was stirred for 1 h and concentrated. Dry AlCl₃ (5 g, 37.5 mmol) and benzene (20 mL) were added to the residue. The reaction mixture was stirred at room

temperature for 16 h and then refluxed for 5 h. On cooling to 0 °C, it was carefully hydrolyzed with water. The aqueous layer was separated and filtered. The product was precipitated by adding aqueous NH₄PF₆. The resulting yellow precipitate was filtered off, washed with water, and dried *in vacuo*. The crude product was reprecipitated from acetone with ether to give the complex [1]PF₆ (2.65 g, 91%) as a yellow solid. Found (%): C, 44.74; H, 4.53. C₁₅H₁₉F₆FeP. Calculated (%): C, 45.03; H, 4.79. ¹H NMR (acetone-d₆), δ : 2.01 (s, δ H, C₅Me₄H); 2.02 (s, δ H, C₅Me₄H); 5.00 (s, 1 H, C₅Me₄H); 6.17 (s, δ H, C₆H₆).

[(η-Tetramethylcyclopentadienyl)tris(tert-butyl isocyanide)-iron] hexafluorophosphate, [(η-C₅Me₄H)Fe(Bu^tNC)₃]PF₆ ([2]PF₆). A solution of the complex [1]PF₆ (150 mg, 0.37 mmol) and Bu^tNC (0.3 mL) in acetonitrile (10 mL) was irradiated for 24 h. The solvent was removed in vacuo. The residue was dissolved in a small amount (2—3 mL) of CH₂Cl₂ and separated by column chromatography (column 10×1 cm, Al_2O_3). The collected yellow fraction was concentrated to ~2 mL and diluted successively with ether (10 mL) and light petroleum (10 mL). The resulting precipitate was filtered off, washed with ether, and dried in vacuo to give the complex [2]PF₆ (75 mg, 35%) as a yellow solid. Found (%): C, 50.35; H, 7.13; N, 7.31. C₂₄H₄₀F₆FeN₃P. Calculated (%): C, 50.45; H, 7.06; N. 7.35. ¹H NMR (acetone-d₆), δ: 1.55 (s, 27 H, Bu¹); 1.82 (s, 6 H, C₅Me₄H); 1.84 (s, 6 H, C₅Me₄H); 4.41 (s, 1 H, C₅Me₄H).

Comparative study of the photochemical exchange of benzene for Bu^tNC in the complexes [1]PF₆ and [Cp*Fe(η -C₆H₆)]PF₆. A mixture of [1]PF₆ (20 mg, 0.05 mmol), [Cp*Fe(η -C₆H₆)]PF₆ (21 mg, 0.05 mmol), and Bu^tNC (0.2 mL) was dissolved in acetonitrile (2 mL). The resulting solution was irradiated for 10 h. The solvent was removed *in vacuo* and the residue was reprecipitated from acetone with light petroleum. The yellow precipitate (42 mg) was dissolved in acetone-d₆. According to ¹H NMR data, the conversion was 75% for [1]PF₆ and 25% for [Cp*Fe(η -C₆H₆)]PF₆. [Cp*Fe(Bu^tNC)₃]PF₆. ¹H NMR (acetone-d₆), δ : 1.55 (s, 27 H, Bu^t); 1.82 (s, 15 H, Cp*).

[$(\eta$ -Tetramethylcyclopentadienyl)(acetonitrile)bis(trialkyl phosphite)iron] hexafluorophosphate, [$(\eta$ -C₅Me₄H)Fe(MeCN)-{P(OR)₃}₂]PF₆ ([3]PF₆ and [4]PF₆). A solution of the complex [1]PF₆ (150 mg, 0.37 mmol) and P(OR)₃ (0.2 mL) in acetonitrile (10 mL) was irradiated for 20 h. The products were isolated as described for the complex [2]PF₆.

Complex [3]PF₆ (R = Me), yield 151 mg (66%), orange solid. Found (%): C, 33.20; H, 5.62; N, 2.21. $C_{17}H_{34}F_6FeNO_6P_3$. Calculated (%): C, 33.40; H, 5.61; N. 2.29. ¹H NMR (acetone-d₆), δ : 1.51 (s, δ H, C_5Me_4H); 1.71 (s, δ H, C_5Me_4H); 2.56 (s, δ H, MeCN); 3.80 (t, 18 H, P(OMe)₃, $J_{H,P}$ = 5 Hz); 4.38 (s, 1 H, C_5Me_4H). ³¹P NMR (acetone-d₆), δ : -144.3 (sept, 1 P, PF₆⁻, $J_{P,F}$ = 707 Hz); 175.6 (s, 2 P, P(OMe)₃).

Complex [4]PF₆ (R = Et), yield 57 mg (22%), orange solid. Found (%): C, 39.71; H, 6.76; N, 1.96. $C_{23}H_{46}F_{6}FeNO_{6}P_{3}$. Calculated (%): C, 39.72; H, 6.67; N. 2.01. ¹H NMR (acetone-d₆), δ : 1.34 (t, 18 H, P(OEt)₃, $J_{H,H}$ = 10 Hz); 1.51 (s, 6 H, $C_{5}\underline{Me_{4}}H$); 1.71 (s, 6 H, $C_{5}\underline{Me_{4}}H$); 2.54 (s, 3 H, MeCN); 4.16 (m, 12 H, P(OEt)₃); 4.37 (s, 1 H, $C_{5}\underline{Me_{4}}H$). ³¹P NMR (acetone-d₆), δ : -143.8 (sept, 1 P, PF₆⁻, $J_{P,F}$ = 707 Hz); 170.9 (s, 2 P, P(OEt)₃).

[$(\eta\text{-Tetramethylcyclopentadienyl})(acetonitrile)$ {1,2-bis(diphenylphosphino)ethane}iron] hexafluorophosphate, [$(\eta\text{-C}_5\text{Me}_4\text{H})\text{-Fe}(\text{MeCN})(\text{dppe})]\text{PF}_6$ ([5]PF $_6$). A solution of the complex [1]PF $_6$ (150 mg, 0.37 mmol) and dppe (148 mL) in acetonitrile

(10 mL) was irradiated for 20 h. The product was isolated as described for the complex [2]PF₆. The yield of the complex [5]PF₆ was 91 mg (32%), red solid. Found (%): C, 57.15; H, 5.11; N, 1.48. $C_{37}H_{40}F_6FeNP_3 \cdot 0.25CH_2Cl_2$. Calculated (%): C, 57.16; H, 5.22; N, 1.79. ¹H NMR (acetone-d₆), δ : 1.32 (s, 6 H, C_5Me_4H); 1.51 (s, 6 H, C_5Me_4H); 2.29 (m, 2 H, CH₂); 2.46 (m, 2 H, CH₂); 3.90 (s, 1 H, C_5Me_4H); 7.60 (m, 16 H, Ph); 7.76 (m, 4 H, Ph). ³¹P NMR (acetone-d₆), δ : –144.2 (sept, 1 P, PF₆⁻, $J_{P,F}$ = 707 Hz); 91.2 (s, 2 P, dppe).

[$(\eta$ -Tetramethylcyclopentadienyl)tris(trialkyl phosphite)iron] hexafluorophosphate, [$(\eta$ -C₅Me₄H)Fe{P(OR)₃}₃]PF₆ ([6]PF₆ and [7]PF₆). A solution of the complex [1]PF₆ (150 mg, 0.37 mmol) and P(OR)₃ (0.2 mL) in CH₂Cl₂ (10 mL) was irradiated for 24 h. The products were isolated as described for the complex [2]PF₆.

Complex [6]PF₆ (R = Me), yield 29 mg (11%), red solid. Found (%): C, 29.64; H, 5.36. $C_{18}H_{40}F_6FeO_9P_4 \cdot CH_2Cl_2$. Calculated (%): C, 29.29; H, 5.43. ¹H NMR (acetone-d₆), δ : 1.66 (s, 6 H, C_5Me_4H); 1.73 (s, 6 H, C_5Me_4H); 3.80 (s, 27 H, P(OMe)₃); 3.35 (s, 1 H, C_5Me_4H). ³¹P NMR (acetone-d₆),

δ: -144.3 (sept, 1 P, PF₆⁻, $J_{P,F} = 708$ Hz); 173.5 (s, 3 P, P(OMe)₃).

Complex [7]PF₆ (R = Et), yield 86 mg (28%), red solid. Found (%): C, 36.75; H, 6.53. $C_{27}H_{58}F_6FeO_9P_4 \cdot CH_2Cl_2$. Calculated (%): C, 37.14; H, 6.68. ¹H NMR (acetone-d₆), δ : 1.34 (t, 27 H, P(OEt)₃, $J_{H,H}$ = 7 Hz); 1.68 (s, 6 H, $C_5\underline{Me_4}H$); 1.77 (s, 6 H, $C_5\underline{Me_4}H$); 4.18 (m, 18 H, P(OEt)₃); 3.30 (s, 1 H, $C_5\underline{Me_4}H$). ³¹P NMR (acetone-d₆), δ : -144.3 (sept, 1 P, PF₆⁻, $J_{P,F}$ = 708 Hz); 168.6 (s, 3 P, P(OEt)₃).

[(η-Tetramethylcyclopentadienyl)iron] (μ-η:η-pentaphospholyl)[(η-pentamethylcyclopentadienyl)iron] hexafluorophosphate, [(η- C_5 Me₄H)Fe(μ-η:η-cyclo- P_5)FeCp*]PF₆ ([8]PF₆). Dichloromethane (10 mL) was added to a mixture of the complex [1]PF₆ (40 mg, 0.10 mmol) and pentaphosphaferrocene Cp*Fe(η-cyclo- P_5) (40 mg, 0.12 mmol). The reaction mixture was irradiated for 15 h, concentrated to ~2 mL, and separated by column chromatography (column 10×1 cm, silica gel, CH₂Cl₂—Me₂CO (10:1)). The collected dark gray fraction was concentrated *in vacuo* and the residue was reprecipitated from CH₂Cl₂ with light petroleum. The yield of the complex [8]PF₆

Table 3. Crystallographic parameters and the data collection and refinement statistics for the complexes [2]PF₆ and [3]PF₆

Parameter	[2]PF ₆	[3]PF ₆
Molecular formula	$C_{24}H_{40}F_6FeN_3P$	$C_{17}H_{34}F_6FeNO_6P_3$
M	571.41	611.21
Crystal system	Orthorhombic	Triclinic
Space group	Pccn	$P\overline{1}$
a/Å	17.424(2)	8.8447(6)
b/Å	20.025(2)	11.6752(8)
c/Å	17.018(2)	12.7336(9)
α/deg	_ ` `	96.5340(10)
B/deg	_	91.0170(10)
γ/deg	_	93.9150(10)
$V/Å^3$	5937.9(12)	1302.90(16)
\overline{Z}	8	2
$d_{\rm calc}/{ m g~cm^{-3}}$	1.278	1.558
Crystal size/mm	$0.45 \times 0.35 \times 0.20$	$0.40 \times 0.30 \times 0.15$
Crystal color and shape	Yellow plates	Red plates
Diffractometer	Bruker APEX II	Bruker SMART
Radiation	$Mo-K\alpha \ (\lambda = 0.71073)$	
μ/mm^{-1}	0.616	0.838
Absorption correction	APEX2	SADABS
Temperature/K	100(2)	120(2)
Scan mode	ω	ϕ and ω
$2\theta_{\rm max}/{\rm deg}$	52.00	52.00
Number of measured reflections	54895	11309
Number of independent reflections (R_{int})	5829 (0.0959)	5072 (0.0185)
R_1 (on F for reflections with $I > 2\sigma(I)$)	0.0348	0.0426
	(4115 reflections)	(4274 reflections)
wR_2 (on F^2 for all reflections)	0.0859	0.1063
Number of parameters refined	329	318
Weighting scheme	$w^{-1} = \sigma^2(F_o^2) + (aP)^2 + bP$, where $P = 1/3(F_o^2 + 2F_c^2)$	
a	0.0383	0.0510
b	1.3603	2.0650
G00F	1.021	0.996
F(000)	2400	632
Residual electron	0.363/-0.293	1.156/-0.408
density, $(d_{\text{max}}/d_{\text{min}})/\text{e Å}^{-3}$		

was 23 mg (34%), green solid. Found (%): C, 34.22; H, 4.20. $C_{19}H_{28}F_6Fe_2P_6$. Calculated (%): C, 34.16; H, 4.23. ¹H NMR (acetone- d_6), δ : 1.22 (s, 15 H, Cp*); 1.30 (s, 6 H, C_5Me_4 H); 3.41 (s, 1 H, C_5Me_4H). ³¹P NMR (acetone-d₆), δ : -144.2 (sept, 1 P, PF_6^- , $J_{PF} = 707 \text{ Hz}$; $-24.2 \text{ (s, 5 P, cyclo-P_5)}$.

X-ray diffraction study of the complexes [2]PF₆ and [3]PF₆. Single crystals of [2]PF₆ and [3]PF₆ were grown by slow diffusion in a two-phase system consisting of a solution of the complex in CH₂Cl₂ and a mixture of Et₂O and light petroleum. Crystallographic parameters and the data collection and refinement statistics are given in Table 3. The structures were solved by the direct methods. All non-hydrogen atoms were located from difference electron-density maps and refined anisotropically on F_{hkl}^2 ; all hydrogen atoms were located geometrically and and refined using a riding model with $U(H) = n \cdot U(C)$, where U(C) is the equivalent thermal parameter of the C atom bearing the H atom; n = 1.2 and 1.5 for the CH and Me groups, respectively. All calculations were performed with the SHELXTL PLUS 5 program package (see Ref. 21). The atomic coordinates, thermal parameters, and comprehensive data on the geometrical parameters of the complexes [2]PF₆ and [3]PF₆ have been deposited with the Cambridge Crystallographic Data Center (Nos 736 452 and 736 453, respectively).

This work was financially supported by the Russian Foundation for Basic Research (Project No. 09-03-00603a).

References

- 1. T. P. Gill, K. R. Mann, *Inorg. Chem.*, 1980, **19**, 3007.
- 2. J. L. Schrenk, M. C. Palazzotto, K. R. Mann, Inorg. Chem., 1983, **22**, 4047.
- 3. T. P. Gill, K. R. Mann, Inorg. Chem., 1983, 22, 1986.
- 4. A. M. McNair, J. L. Schrenk, K. R. Mann, Inorg. Chem., 1984, **23**, 2633.
- 5. A. R. Kudinov, M. I. Rybinskaya, Yu. T. Struchkov, A. I. Yanovskii, P. V. Petrovskii, J. Organomet. Chem., 1987, **336**, 187.
- 6. O. J. Scherer, T. Brück, G. Wolmershäuser, Chem. Ber., 1989, **122**, 2049.

- 7. A. R. Kudinov, A. A. Fil'chikov, P. V. Petrovskii, M. I. Rybinskaya, Izv. Akad. Nauk, Ser. Khim., 1999, 1364 [Russ. Chem. Bull. (Engl. Transl.), 1999, 48, 1352].
- 8. A. R. Kudinov, D. A. Loginov, S. N. Ashikhmin, A. A. Fil'chikov, L. S. Shul'pina, P. V. Petrovskii, Izv. Akad. Nauk, Ser. Khim., 2000, 1647 [Russ. Chem. Bull., Int. Ed., 2000, **49**, 1637].
- 9. A. R. Kudinov, D. A. Loginov, Z. A. Starikova, P. V. Petrovskii, M. Corsini, P. Zanello, Eur. J. Inorg. Chem., 2002, 3018.
- 10. A. K. Diallo, J. Ruiz, D. Astruc, Org. Lett., 2009, 11, 2635.
- 11. J. L. Schrenk, A. M. McNair, F. B. McCormick, K. R. Mann, Inorg. Chem., 1986, 25, 3501.
- 12. P. Zanello, R. H. Herber, A. R. Kudinov, M. Corsini, F. Fabrizi de Biani, I. Nowik, D. A. Loginov, M. M. Vinogradov, L. S. Shul'pina, I. A. Ivanov, A. V. Vologzhanina, J. Organomet. Chem., 2009, **694**, 1161.
- 13. D. Catheline, D. Astruc, Organometallics, 1984, 3, 1094.
- 14. A. R. Kudinov, D. A. Loginov, P. V. Petrovskii, M. I. Rybinskaya, Izv. Akad. Nauk, Ser. Khim., 1998, 1625 [Russ. Chem. Bull. (Engl. Transl.), 1998, 47, 1583].
- 15. A. R. Kudinov, M. I. Rybinskaya, Izv. Akad. Nauk, Ser. Khim., 1999, 1636 [Russ. Chem. Bull. (Engl. Transl.), 1999, 48, 1615].
- 16. K. E. du Plooy, J. du Toit, D. C. Levendis, N. J. Coville, J. Organomet. Chem., 1996, 508, 231.
- 17. D. A. Loginov, M. M. Vinogradov, Z. A. Starikova, P. V. Petrovskii, A. R. Kudinov, Izv. Akad. Nauk, Ser. Khim., 2007, 2088 [Russ. Chem. Bull., Int. Ed., 2007, 56, 2162].
- 18. D. A. Loginov, M. M. Vinogradov, L. S. Shul'pina, A. V. Vologzhanina, P. V. Petrovskii, A. R. Kudinov, Izv. Akad. Nauk, Ser. Khim., 2007, 2064 [Russ. Chem. Bull., Int. Ed., 2007, 56, 2118].
- 19. H. Schumann, L. Eguren, J. W. Ziller, J. Organomet. Chem., 1991, **408**, 361.
- 20. R. B. King, M. B. Bisnette, J. Organomet. Chem., 1967, 8, 287.
- 21. SHELXTL v. 5.10, Structure Determination Software Suite, Bruker AXS, Madison, Wisconsin, USA, 1998.

Received June 18, 2009; in revised form February 18, 2010